J/ψ Polarization at 800 GeV Proton-Copper Interactions

Vassili Papavassiliou, NMSU

Feb. 24, 2000

Outline

- ✓ Motivation
- ✓ Theory
- **✓** Experiment
- ✓ Implications

Presented at the 2^{nd} Workshop on B Physics at the Tevatron: Run II and Beyond

Motivation

 J/ψ Production still not very well understood Why is this process important?

- Charm production reasonably well explained by QCD
 charm quark mass large enough for perturbative calculations, yet
 small enough for copious production at fixed-target experiments
- Charmonium production more complicated
 cc-pair binding is long-distance effect not calculable in pQCD
- Effective Field Theory: Non-Relativistic QCD
 cc-pair does not need to be in color-singlet state to form charmonium
- Relative magnitude of color-octet and color-singlet matrix elements not fixed by theory must be determined from experiment (e.g. fit to total production cross section)
- Still, significant predictive power
 ME's determined from some process can be used to predict another

Charmonium production provides important tests of QCD

Charmonium Production in NRQCD

Basic parton processes for *direct* production $(H = \psi, \chi_J)$:

$$ullet gg
ightarrow car c
ightarrow H$$

$$\bullet \ q\overline{q} \to c\overline{c} \xrightarrow{\mathbf{c}} H$$

$$ullet gq
ightarrow c\overline{c} q
ightarrow H$$

Both $2 \rightarrow 2$ and $2 \rightarrow 3$ processes contribute

Intermediate $c\overline{c}$ state can be color-octet or color-singlet

Respective ME's:
$$\mathcal{O}_8^H(^{2S+1}L_J)$$
 and $\mathcal{O}_1^H(^{2S+1}L_J)$

Actual number of independent matrix elements is smaller due to spin-symmetry relations

e.g.
$$\langle \mathcal{O}_8^{\psi}(^3P_J) \rangle = (2J+1) \langle \mathcal{O}_8^{\psi}(^3P_0) \rangle$$

Several combinations of ME's derived from fits to total cross sections

Predictions of polarization should come "for free"

Polarization assumed to survive soft-gluon radiation in FS

Measurement

Polarization measured through angular distribution of direction of dimuon vector in charmonium center-of-mass frame

$$\frac{d\sigma}{d\cos\theta} \propto 1 + \lambda\cos^2\theta$$

λ	Polarization
> 0	Transverse
=0	Unpolarized
< 0	Longitudinal

Note: θ can be measured either with respect to the beam direction or to the bisector of the angle of the two initial-state hadrons

Difference negligible at small p_T

Predictions

- ullet Transverse ψ polarization expected at large p_T Production dominated by gluon fragmentation Not seen in CDF data
- Mostly transverse ψ polarization at fixed-target energies Expect $0.15 < \lambda < 0.44$ (Beneke and Rothstein)

 Also not in agreement with experiment

 Very little or no polarization seen

 But: averaging over x_F may be masking some effects Need to study x_F dependence with high statistics

Complications

- 1. There is more than just the direct production J/ψ can be the product of ψ' or χ_c decays All charmonium states can be products of b decays Inclusion of χ_c decays increases the polarization
- 2. Relative importance of gg and $q\overline{q}$ terms varies with x_F $q\overline{q}$ dominates at large x_F , gg everywhere else
- 3. Nuclear effects at fixed-target experiments could affect singlet and octet states differently

 Nuclear effects known to be strongly x_F -dependent

Note: At fixed-target energies gluon fragmentation is much less important (not high-enough p_T) and b decays are negligible

The Experiment

FNAL E-866/NuSea Experiment

Dimuon-production in 800-GeV p interactions with various targets (H₂, D₂, Be, Fe, W)

Both Drell-Yan and quarkonium production studied
Main motivation: study the Nucleon Sea $(\overline{d}/\overline{u} \text{ ratio})$

Also: nuclear effects in dimuon production

Spectrometer FNAL E866 (NUSEA)

Angular Distribution Data

Dedicated run in April '97 using the beam dump as target

- $m \prime$ High statistics data with acceptance centered around the J/ψ peak
 - 400M triggers recorded in three weeks
 - mostly ψ 's; some Drell-Yan continuum and random pairs from charm decays
 - Frequent configuration changes to study biases
 - two different magnet currents
 - two opposite polarities
- ✗ Degradation of mass and vertex resolution
 - J/ψ and ψ' peaks cannot be separated $\sim 1\%$ contamination from ψ'
 - Monte Carlo corrections for energy loss and multiple scattering without benefit of "point" target

Also, acceptance not uniform as a function of heta

Again, rely on Monte Carlo for correction

<u>Analysis</u>

Doctoral dissertation of Ting-Hua Chang (NMSU)

- Dimuon mass reconstructed from extrapolated vertex position
- Corrections for energy loss and multiple Coulomb scattering
- ullet Mass spectrum fitted to Gaussian plus background in eta, x_F and p_T bins
- ullet Event yields from fits plotted versus heta
- θ distributions divided by corresponding Monte Carlo ones, generated flat in θ (i.e. unpolarized)
 ⇒ Obtained acceptance-corrected θ distributions
- ullet Corrected heta distributions fitted to $N(1+\lambda\cos^2 heta)$ to obtain polarization λ in x_F and p_T bins
- \Longrightarrow About $10^7~J/\psi$ events left in the final data set

Figure B.1: Fitting of the mass spectrum: $0 < p_t < 1$ and $0.25 < x_F < 0.35$. The backgrounds were fitted to second-order polynomials, and the J/ψ 's were fitted to Gaussians. The $\cos \theta$ ranges are indicated under each spectrum. The current of SM12 magnet was 2040 Ampere.

Yield vs. coso

Figure 3.2: Reconstructed $\cos\theta$ distributions for both magnet settings. The reconstructed distributions recover the thrown (flat) distributions.

Polarization us. Pf in two x regions

Figure 5.7: J/ψ polarization parameter λ in 1-GeV p_T bins. The plot shows λ in two regions of x_F : $x_F < 0.45$ and $x_F > 0.45$. The errors are statistical only.

Polarization vs. XF - Integrated over PT

Figure 5.6: $\lambda(x_F)$ from FNAL E866 and from CIP group. The error bars on E866 data are statistical only; the systematic error is shown in the shadowed band below.

Systematic Uncertainties

The following sources of systematic errors were considered:

- Incoming beam angle
- Beam centroid
- ullet Shape of assumed $d\sigma/dp_T$
- Limits of fits
- Backgrounds
- Magnet currents

Overall systematic uncertainty $\sim \mathcal{O}(10\%)$ — with little x_F dependence

Cross Checks

Several tests increase confidence in results

- Results from different magnet polarities and fields in reasonable agreement with each other
- \bullet Angular distribution for Drell-Yan above J/ψ peak consistent with 100% transverse polarization, as expected

After subtraction of background from random coincidences of unrelated muons

ullet Checked sensitivity to shape of background under J/ψ peak, p_T shape of assumed production cross section, etc

All the above are included in the systematic errors

COSO distribution - Drell-Yan events (M74 GeV)

Figure 5.3: $\cos\theta$ of the Drell-Yan pairs. The pairs have mass ranging from 4 GeV to 7 GeV. Solid line: After random subtraction. Dashed line: Before random subtraction. A λ value of 0.98 \pm 0.04 is obtained after correcting for the random pairs. The rise at the edges is due to resolution effects.

Discussion

Highest-statistics measurement of J/ψ production polarization to date

- ullet Integrated over x_F , the J/ψ is produced essentially unpolarized
- ullet Small transverse polarization may be seen at small-to-medium x_F

Consistent with zero when systematic errors are taken into account

- At large x_F polarization turns to longitudinal Similar effect seen with pion beams
- ullet Polarization largely independent of p_T from 0 to 4 GeV
- Polarization change roughly coincides with transition from gg to $q\overline{q}$ dominance of the cross sections

 High x_F region may be dominated by higher-twist effects

 Effect of χ_c decays must also be considered

⇒ Understanding the details of charmonium production requires more work

<u>Implications</u>

In addition to its significance in improving understanding of QCD in the long-distance regime:

Understanding the details of charmonium production is also important for RHIC — in particular the spin program

- J/ψ production through gluon-gluon fusion one of the best hopes to pin down contribution of gluons to proton spin potentially very large
- Production asymmetry depends on relative magnitude of various matrix elements — different angular momentum as well as color
- Most calculations to date done in the color-singlet model, known to be incapable of describing magnitude of total cross section
- ⇒ Need updated calculation using right mix of matrix elements when we know them!